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Fluctuational attenuation of sound in smectics 

E V Gurovich, E I Kats and V V Lebedev 
L D Landau Institute for Theoretical Physics, Moscow, USSR 

Received 9 April 1990 

Abstract. The low-frequency dynamics of smectics C is studied. A system of non-linear 
equations is given, on the basis of which a spectrum of eigenmodes of smectic C is obtained. 
An estimate is made of the coefficients entering the dispersion laws and a description of their 
critical behaviour near A-C transition is given. The analysis shows that orientation and 
undulation modes always couple strongly, which results in an essential difference of the 
undulation dispersion law in smectic C compared to smectic A or B. Owing to this the 
coefficients at w - '  in anomalous fluctuational contributions to the viscosities of smectics A 
and C differ. The results of this paper make i t  possible to give a complete interpretation of 
the experimental data on sound attenuation in smectics. 

1. Introduction 

Smectics are liquid-crystalline phases with a pronounced layered structure. One can 
experimentally observe various smectic phases labelled as smectics A-I. It should be 
borne in mind that a large number of smectic phases are layered 3D crystals. The genuine 
smectics (where the shear modulus is zero) are only smectics A, C and some smectics B. 
The latter are usually called hexatics to be distinguished from crystalline smectics B. 

In this paper we shall study one of the most common smectic phases, namely, the C 
phase. In contrast to the A phase, where the director is oriented perpendicular to the 
smectic layers, the director of the C phase is tilted to the smectic layers. As a rule, the 
smectic C phase emerges from the smectic A phase at cooling. This phase transition is a 
second-order phase transition. 

In all known smectics C the angle between the director and the normal to the layers 
is small. In other words, the C phase is always close to the A phase. This means that 
when studying the C phase it is necessary to take into account critical effects, associated 
with the A-C transition. These critical effects manifest themselves particularly strongly 
in dynamics. 

Genuine smectics, such as smectics A and C, are phases where there is one-dimen- 
sional density modulation. As was shown by Peierls and Landau (see Landau and Lifshitz 
1980), long-wavelength fluctuations in such a system destroy the genuine long-range 
order. Nevertheless, the elasticity with respect to the smectic layer displacement is well 
defined. As was demonstrated by Grinstein and Pelcovits (1982) and one of the authors 
(EK) (Kats 1982), the appropriate elasticity moduli depend only weakly (logarith- 
mically) on scale. 

Long-wavelength fluctuations of smectic layers manifest themselves particularly 
strongly in the dynamics of smectics. As was first shown by Mazenko et a1 (1983), these 
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fluctuations bring about emergence of w-' diverging corrections to the so-called bulk 
viscosity coefficients of smectics. This leads to anomalous frequency dependence of the 
attenuation of both first and second sound. The self-consistent theory of dynamical 
fluctuation effects in smectics, accounting for the logarithmic renormalization of the 
parameters, was developed by two of the authors (EK and VL) (Kats and Lebedev 1983, 
1988). 

Strictly speaking these papers describe the smectic A phase. Therefore there is a 
problem of peculiarities of the anomalous attenuation of sound in the smectic B and C 
phases, which in comparison with the A phase have an additional long-wavelength 
orientational mode. This problem was investigated by two of us (EK and VL) in 
Kats and Lebedev (1985) where we have come to the conclusion that the expressions 
describing the anomalous attenuation of sound in the B and C phases practically coincide 
with the expressions for the A phase. This conclusion is valid for hexatic smectics B but 
requires a more thorough analysis for the C phase. 

However, while studying the spectrum of the B and C phases we have ignored the 
coupling of the orientational and smectic (undulation) modes. This coupling is, of 
course, missing in hexatics. The weakness of this coupling in the C phase has been 
accounted for in Kats and Lebedev (1985) by the small value of the tilt angle of the 
director in real smectics C. However, the study of the critical dynamics of the smectic 
A-to-smectic C transition, performed by us in Gurovich et a1 (1988), has shown that, 
despite the small value of the tilt angle of the director, the coupling of the orientational 
and undulational modes in the C phase is far from being weak. This brought us back to 
the problem of peculiarities of the anomalous attenuation of sound in the smectic C 
phase. 

The first experiments in which the U-' law was observed (Gallani and Martinoty 
1985, Bhattacharya and Ketterson 1982) concerned the A phase. Yet, recently Collin er 
a1 (1986a) have observed the anomalous attenuation of sound in the C phase. It is 
important that they have been the first to observe previously the anomalous attenuation 
of sound in the A phase of the same substance (Collin et a1 1986b), which makes it 
possible to compare the character of this attenuation in the A and C phases. 

In this paper we shall carry out a consistent calculation of the anomalous attenuation 
of sound in the C phase. In this calculation we shall employ the non-linear dynamic 
equations of the C phase on the basis of the diagram technique. The results hold both 
for the spectrum of the first and second sound and for the spectrum of relaxation 
(orientational and undulation) modes. Comparison with experimental data will be given 
in the conclusion. 

2. Thermodynamics of smectic C 

It is convenient to describe the layered structure of smectics by means of the density 
modulation phase; this variable will be represented by W. By virtue of the definition of 
W the condition W(t, r )  = constant sets a position in space and evolution in time of a 
certain smectic layer. Accordingly the vector V W fixes the direction of the normal to the 
layer, and 

vw E = - - - -  

is a unit vector along this direction. 
l VWl 
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The anisotropy of a liquid crystal is characterized by the director, pointing to the 
preferred direction of the long axes of molecules. In smectics A the director is orthogonal 
to the layer, i.e. coincides with the vector 1.  In smectics C the director n is tilted by a 
certain angle to the normal, therefore the vector 

+ = n x E  ( 2 )  

is non-zero. The modulus of the vector * determines the tilt angle of the director, and 
the unit vector 

* 
n 1  =id (3) 

fixes the preferred direction in the plane of the smectic layer. 
In the C phase the modulus * is fixed but the direction of the vector nl is not fixed. 

Thus the macroscopic state of smectic C should be characterized by an additional variable 
in comparison with the A phase, characterizing the direction of n l .  This is accounted for 
by spontaneous breaking of the rotational symmetry of the layer in smectic C. 

By virtue of the conditions n: = 1, n l  I = 0, the vector nl has only one degree of 
freedom which we shall call orientational. This degree of freedom can be conveniently 
described by means of the non-holonomic angle cp whose variation is set as follows: 

6cp = 2(n l  X 1 ) 6 n , .  (4) 

The consequence of definition (4) is the variation commutation rule: 

Apart from the mentioned variables W ,  cp the overall set of long-wavelength variables 
of smectic includes the momentum densityj, the mass density p and specific entropy U .  

Thus the energy of the C phase is written down as 

H = d 3 r  - + E(p, (5, VW,  ViVkW, nlVcp)). i i% 
The energy density E depends only on derivatives of Wsince the energy Edoes not change 
at the transformation W - ,  W + constant. The gradient of the vector nl is expressed via 
gradients of cp and W .  

In our approximation the energy density E can be conveniently represented as a 
sum: 

E = E ( P ,  U )  + Ew + E ,  + E,, (7) 

of the isotropic term E ,  smectic energy Ew, orientational energy E,  and of the cross term 

The smectic part of the energy of the C phase in our approximation can be written 
E,W. 

as follows: 

Ew = (B /8 ) [q ;2 (VW)2  - 1]* + ( ~ / ~ ~ ~ ) ~ 6 ~ 6 ~ ~ ~ , ~ ~ ~ ~ ~ ~ ~ ~ .  (8) 

Here B is the modulus of smectic layer compression, K is the elasticity modulus, qs is 
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the wavevector, determining the modulation period of the smectic; this period being 
equal to 2nq;’. In (8) and henceforth we use the following designation: 

si = a r k  - l l l k .  

The orientation energy E,  can be written down as follows: 

= i[(a1 - a 2 ) n l i n l k  + a 2 s : k  + a 3 1 ~ 1 k l V ~ q V k q ~  (9) 
The quantities a1,2,3 involved here can be called orientational elasticity moduli. The 
cross term Eqw in (7) is represented as 

E,w = -@q,‘nlVqa:kVlvkW. (10) 
Equation (10) is written down in the main (isotropic) approximation. The coefficient p 
is the cross-elasticity modulus. Anisotropic coefficients of the cross elasticity are small 
as long as the smectic C is close to the point of the second-order phase transition into 
the A phase (see section 4). 

The energy minimum (8) is achieved by the solution W = qsz, which describes the 
system of equidistant smectic layers, perpendicular to the t axis. To describe deviations 
of smectic layers from this position one should put 

w = q s ( z  - U). (11) 
Here U is a displacement vector of layers along the z axis. 

Expanding the energy (8) in U ,  we get in the second order the following expression: 

E;) = (B/2)(V2u)* + (K/2)[(V: + V,?)u]*. (12) 
In the same quadratic approximation equations (9) and (10) reduce to 

E!) = la2(V,q)2 + ial(V,q)’ + la3(V2q)2 
E!& = p V , q ( V ~  + V ; ) u .  

As has been shown in Grinstein and Pelcovits (1982) and Kats (1982) on the basis of 
perturbation theory, in smectic A there is logarithmic renormalization of the moduli B, 
K.  This effect is due to thermal fluctuations of U and is associated with the third- and 
fourth-order interaction terms which emerge from the expansion of the first term in the 
energy (8) in U. A similar situation takes place in a smectic C, but the renormalization 
group equations become complicated because of coupling of the smectic and orien- 
tational degrees of freedom. The analysis of the renormalization group equations 
obtained will be published elsewhere. 

Bearing in mind the real situation, from here on we shall regard this logarithmic 
renormalization as weak. 

3. Dynamic equations 

Now we can take up derivation of the long-wavelength equations of dynamics for 
smectics C. Then we shall largely follow the work of Kats and Lebedev (1985) retaining, 
however, a number of the omitted terms. First we shall derive non-dissipative (reactive) 
terms in the equations of the dynamics and then add the dissipative terms to them. 
Formally these terms differ from each other by symmetry with respect to time reversal. 

It is most convenient to derive the non-dissipative terms in the equations by the 
Poisson brackets method (see the review by Dzyaloshinskii and Volovik 1980). By means 
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of this method one can derive local equations automatically satisfying all necessary 
conservation laws. For the variablesj, p ,  a, W describing smectics the non-zero brackets 
are: 

{ j i ( r ~ ) >  p ( r 2 ) )  = -VipG(rl - r2) + ViG(rl - r 2 ) ~ ( r 2 )  

{ i i @ l ) ,  = -viaw., - r2) 

Note the local and universal character of the expressions given in (14). 
The non-dissipative equations are invariant with respect to time reversal. Therefore 

the expression for the Poisson bracket must change its sign at t+ - t. The Poisson 
bracket (14) obeys this condition. It follows from this condition that to derive the non- 
dissipative equations for smectic C one should add to (14) the only non-zero bracket 
Q, rp} whose expression reads 

{ j ; ( r l ) >  P ? ( r 2 ) )  = - V i r p G ( r l  - r 2 >  + V k G ( r l  - r 2 ) R i k ( r 2 )  (15) 

where 

Rik = &lkill+Al(nlilk + ~ l k ~ i ) + A ~ ~ n l r ( ~ X n ~ ) k + n l k ( z x n l ) ~ l ~  (16) 

Here A , ,  A2 are phenomenological parameters which are functions of p ,  a. 

Liouville equations with the Hamiltonian (6). They have the form 
Now we can write in full the non-dissipative equations for smectic C which are the 

dpldt = { H ,  p> = -V , (pV , )  (17) 

doldt = { H ,  a} = -V ,V,a  (18) 

d Wldt = { H ,  W }  = - V,V,  W (19) 

d r p l d t  { H ,  9) = - v,v,Q, - R,kVkV, (20) 

d j l l d t  = { H , j ! }  = -Vk(Tik - V,Slik). (21) 

Here V = j / p  is the velocity and the tensors Tlk ,  Sj,k are: 
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The pressure P entering in (22) is standardly defined as 

dE 
P =  p- -  E. 

aP 
It is easily seen that d O i E i k n T k n  determines the variation of the energy density E at 

the rotation by an angle 68;. By virtue of the rotational invariance of E it means that this 
combination is zero, i.e. the tensor Tik is symmetric. The term vkvjsj;k in the right-hand 
side of (21) can always be reduced to the divergence of the symmetric tensor. Thus 
d j i / a t  cn be written as the divergence of the symmetric tensor, which guarantees fulfil- 
ment of the angular momentum conservation law. 

To the non-dissipative equations one should add the kinetic terms. With these terms 
taken into account the equations become 

In equation (24) q implies the overall set of long-wavelength variables (for smectic C 
they a re j ,  p ,  (5, W ,  q), the summation is performed over the repeated index 6. The 
molecular field h,, conjugated to q,  in (24), equals 

h ,  = 6 H / d q , .  (25) 
The differential operator r o b  in (24) is defined by the set of kinetic coefficients (of 
viscosity, thermal conductivity, permeation; see Kats and Lebedev 1983, 1988). 

and the momentum densityj the dynamic equations 
with the kinetic terms taken into account acquire the following form: 

For the orientational variable 

a q / a t  = ViViQ, - RikViVk - T h ,  (26) 

(27) = - V k ( T i k  - V n S i n k )  + V k ( V i k / m V m v / ) .  
In (26) there is a kinetic coefficient r; the quantity r-' has the dimensionality of viscosity 
and is analogous to the torsional viscosity of nematics. The viscosity tensor in the right- 
hand side of equation (27) has the following structure (using the designations of Forster 
et a1 1971): 

r i k h  = r l 1 i Z k f / l m  + r / 2 ( d i g k l m  + shskt> 
+ q 3 ( f i f / d i m  + f k l / s &  + l j c ! m d t /  f l k l m d i )  

+ ( r /4  - r3)s;shI + 2r5(dh11ilk + 8 i : k l / l m ) *  (28) 
Generally speaking, by virtue of the biaxiality of smectic C the structure of the viscosity 
tensor of this phase is more complicated. Yet, due to the small value of the tilt angle of 
the director with respect to I ,  we shall confine ourselves to the uniaxial expression (28). 

4. Critical behaviour 

In this section we shall briefly describe the behaviour of the parameters of the smectic 
C phase near T, (the temperature of transition into the A phase). Details can be found 
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in our works (Gurovich et a1 1988; Kats and Lebedev 1986) devoted to theoretical 
investigation of the A-C transition. Note that the conclusions resulting from the con- 
sideration of this transition and concerning the C phase are largely general; due to the 
small value of the tilt angle of the director in real smectics C they can always be regarded 
as close to smectics A.  

The order parameter, describing the transition from smectic A to smectic C, is the 
vector + introduced into (2). The mean value of + is zero in the A phase and is non-zero 
in the C phase. By virtue of the definition (+) sets an average tilt of the director n with 
respect to the normal 1 to smectic layers. It is not difficult to see that in the expansion of 
the free energy there are only + even terms. Therefore the A-C transition is a second- 
order transition. 

Due to the condition l+ = 0 the order parameter + has two components. Yet the 
critical behaviour of smectics at the A-C transition is not described by the standard two- 
component model +'-the order parameter + is defined in the real but not isotopic 
space, therefore it 'anchors' with vector quantities. 

Non-universality of the behaviour of smectic characteristics at A-C transition reveals 
itself both in the mean field theory and in a wide region of developed critical fluctuations 
where corrections to the gradient terms can be discarded. In this region the critical 
behaviour of the parameters is described by the non-universal indices (which are func- 
tions of a1/a2). The universal behaviour corresponding to the +' model with a two- 
component-order parameter takes place only in a very narrow region near T, where 
corrections to gradient terms become relevant. The region of universal behaviour is 
apparently not achieved experimentally, therefore we shall not consider it. By the region 
of developed fluctuations we mean the region of the non-universal critical behaviour. 

In the mean field theory in the C phase, (+)2 - IT, - TI. In the region of developed 
fluctuations: 

(+) - IT, - TIP. (29) 

The value of the exponent p is 0.43-0.5. In (8) the wavevector qs has been introduced. 
The critical correction to it is determined by the law: 

4 s  - w2. (30) 

In the mean field theory Aqs - IT, - TI; in the region of developed fluctuations, 

Quantities like heat capacity or compressibility of smectics, in the mean field theory, 
experience a positive jump at the transition into the C phase. The modulus B decreases 
at this transition by a value of the order of itself. In the region of developed fluctuations 
there arise critical singularities in the heat capacity C o r  in the quantity B-': 

Aq, - 1 T, - TI2P. 

C, B-' - IT, - TI". (31) 

These singularities reveal themselves both in the A phase and in the C phase but with 
different factors at 1 T, - TI". The exponent of the heat capacity a is small ( a  < 0, 1). 
Therefore experimental observation of the singularity (31) is difficult. 

The elasticity moduli K ,  a and p entering in (8), (9) and (10) can be expressed 
via Frank constants K1,2,3 and the order parameter + of the A-C transition. This 
representation is useful because there are no corrections to the Frank coefficients K1,2,3 
in the mean field theory and they are negligibly small in the region of developed 
fluctuations (Kats and Lebedev 1986). 
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Substituting into the Frank energy 

the director n as a function of the smectic variable U and of the angle g, in accordance 
with the definitions (1)-(4) and (ll), we get 

K =  K 1  a 1 . 2 . 3  = f K 2 , 1 . 3 ( $ ) 2  P = 4Kl($). (32) 
Note that these expressions are valid only in the intermediate asymptotic region 

mentioned above. 
Quite different is the critical behaviour of the viscosity coefficients. There are no 

critical singularities in the coefficients q 2 ,  v 3 ,  determining the dispersion law of trans- 
verse to the wavevector components of the velocity. The coefficients q l ,  q4,  q s  deter- 
mining the attenuation of the first and second sound have a strongly pronounced critical 
behaviour. In the mean field theory in the C phase (but not in the A phase!) corrections 
emerge to these coefficients: 

AV17 AV49 AT5 - I T -  Wl. 

A q I ,  Aq4, A75 - IT, - TI-"-'". 

In the region of developed fluctuations: 

(33) 
Here z is the dynamical exponent, close to two, v is the exponent of the critical radius. 
In the mean field theory v = t, in the region of developed fluctuations v = 0,62-0,64. 
The fluctuational divergence (33) occurs both in the A phase and in the C phase (but 
with different factors). 

The critical behaviour of the kinetic coefficient r, entering in equation (26) for the 
angle g, is 

= 4 ( ~ 1 ( $ ) ~ ) - ' .  (34) 
Here y 1  is the (nematic) coefficient of torsion viscosity estimated as y1  - 7 2 . 3 ,  For the 
non-dissipative parameters A l ,  A 2  entering in (16), (22) there is the following expression 
(Gurovich et a1 1988): 

Here A is the nematic non-dissipative parameter close to unity for substances consisting 
of rod-like molecules. Let us stress that the quantities y l ,  A in (34), (35) have no critical 
singularities. 

The estimates given are characteristic of the low-frequency (hydrodynamic) region. 
If the characteristic frequencies w exceed the inverse time of the order parameter 
relaxation, the critical corrections to the parameters become frequency-dependent. We 
shall not give the appropriate estimates, noting only that the frequency suppresses the 
mean field and fluctuational contributions. 

5. Spectrum of slow modes 

The presence of the long-wavelength orientational degree of freedom in smectic C causes 
the appearance of an extra, low-frequency mode in comparison with the A phase. This 
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mode has a diffusive character as in nematics, and it is slow, which is accounted for by 
the small value of the parameter 

K p / q 2  1. (36) 
Here p is the density, K is a quantity of the order of the Frank modulus and q is the 
characteristic viscosity. 

In smectics the second sound also propagates. For propagation angles close to 0" or 
90" with respect to smectic layers, this acoustic mode transforms into two diffusion 
modes. One of these modes is fast and is associated with shear velocity relaxation. 
The other mode is slow and is associated with the smectic layer relaxation. For the 
propagation direction along the layers this mode is undulational. It is with this mode 
that dynamical fluctuational effects in smectics are associated. 

Below we shall be interested in characteristics of the slow undulational and orien- 
tational modes in smectic C. These are low-frequency modes, therefore we can consider 
that 

P = const. T = const. V j  = 0. (37) 
Thus, to describe these modes it is necessary to use equations (19), (26), (27) (the terms 
associated with permeation emerging in the right-hand side of equation (19) are not 
relevant for our study). We shall need only the vortex component of equation (27); 
to obtain that we must multiply this equation by the transverse projection operator 

The spectrum of eigenmodes of the system is determined by linearized equations of 
dynamics. We shall choose as the variables describing the linear dynamics of the slow 
mode, components of the velocity V,, V,, the displacement vector U introduced by 
equation (11) and the angle rp, introduced by (4). The non-holonomity of the latter 
variable in the given case is irrelevant; in the linear approximation, the angle rp itself 
can be used as an independent variable. Note that the z axis at equilibrium is directed 
alongthenormalto thesmecticlayers,i.e. lisaunitvectoralong thisaxis. Thecomponent 
V, is defined in the Fourier representation as 

Here q is the wavevector, q$ = q: + q;. 
As follows from equation (35) ,  in real smectics C where the tilt angle of the director 

is small, ill 9 A 2 ,  Therefore linearizing equation (26) for the angle rp we omit the term 
with A 2 .  Due to the inequality A 1  S 1 we may omit the term generated by the first term 
in the right-hand side of (16). Assuming that at equilibrium the y axis is directed along 
n,, we find the following equation for the angle rp in the Fourier representation: 

S,] - V,V]/VZ. 

v, = (1 x q ) V / q , .  (38) 

091 = ~1[ (4x42 /qJVt  + qyVzI+ imp. 

h, = ( a d  + alq; + W 3 r p  + i(P/2)q,q,u. (40) 

h U  = (Bq;  + Kq;)u - &3q,q$rp. (41) 

Wu = iV,. (42) 

(39) 
Here we have taken into account the condition VV = 0 and in conformity with (25) 
introduced the molecular field h,: 

The molecular field conjugate to the smectic variable U is 

Linearization of equation (19) in the Fourier representation yields 

To equations (39), (42) one should add equations for the components V,, V,  arisingfrom 



9164 E V Gurovich et a1 

(27), Studying the slow modes one can omit the term with the time derivative and should 
bear in mind also the incompressibility condition V V  = 0. Employing equations (8), (9) 
and (10) to construct the non-dissipative stress tensor entering in (27) and linearizing it 
over q ,  U, we ultimately get the following: 

From (39), (42) and (43) one can find the spectrum of slow modes for smectic C. Strictly 
speaking, equations (42) and (43) hold only for the region of existence of the undulational 
mode, i.e. at 

42 Q 7 3 d B P .  (44) 
Under this condition qL Q q l ;  that is why it follows from (42) that V ,  = 0 and in (43) one 
can ignore the term q 1q5. 

The resultant system describes the two branches of the spectrum, corresponding to 
the undulational and orientational modes. The dispersion laws for these branches read: 

Here the designations 

K = K - P2q?/&q2 

are introduced. By virtue of the inequality qL < q1 in (46) and (47) one must insert 
(2.42 = q q :  + (Y2q;. 

According to the definition (46) with the explicit equations (32) and (34) for r, /3 and 
A ,  taken into account we have 

l2  2. Klq: m =  r+l+ - 
2 Klq;  + K2q: 

Remembering that q3 - yl, A - 1 we conclude that m - 1. From equations (32) and 
(34), and from the estimates q3 - y 1  and m - 1, at Bqt - Kq: the frequencies wl,  w 2  
are of the same order and do not depend on the proximity to the point of transition into 
the A phase. 

In the region of the wavevectors q z  % q3q:/Bp instead of the undulational mode 
there is a propagating second sound. In this case the orientational mode is described by 
the dispersion law 

(48) w = - i r &  2 4 
where &q2 = a,q: + a2q? + a 3 q f .  Since the region (44) is very narrow, it is the dis- 
persion law (48) that must be observed in optics. Light-scattering experiments in smectics 
C (Chandrasekhar 1977) at least qualitatively confirm the dispersion law (48) and the 
estimates given above. 
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As follows from (45) the coupling of the undulational and orientational modes is 
strong. Yet at Bq; 9 Kq;  (which, as can be easily seen, is compatible with (44)) this 
coupling vanishes and the dispersion law w-(q )  coincides with (48). 

6. Diagram technique 

The dynamic effects associated with fluctuations of smectic layers can be conveniently 
studied by means of the diagram technique. The diagram technique, suitable for such 
problems, was first constructed by Wyld (1961). We shall employ the formalism proposed 
by Lebedev et a1 (1983). Having the non-linear dynamic equations (24) for smectic C, 
we can construct the effective Lagrangian 

Here qa is an overall set of long-wavelength variables for smectic C and pa are the 
additional fields conjugated to them. 

By means of the Lagrangian (49) one can calculate the dynamic correlations functions 
of the long-wavelength variables. So for the pair correlation functions there are the 
following expressions: 

- t2  , r l  - r2) = ( q ~ ( ~ l  r r l  ) q b(t2 9 r2)) = i Dq DP exp ( i i d t  3r L )  q a q b  

Gab (tl - t 2  9 rl - r 2 )  = (q a ( t l ,  rl )P b (t2 , r2)) = 1.9 DP exp ii j d t d  3r  L )  Q)a q b .  

(50) 

The function Dab is a pair correlation function of the long-wavelength variables, Gab 
determines the linear susceptibility of the system. Consequently, the poles Gab(w, k) fix 
the spectrum of eigenmodes of the system. Note that the correlation function (p,pb) is 
identically equal to zero (Khalatnikov et a1 1984). 

The definition (50) enables us to formulate the standard diagram technique for 
calculating the correlation functions. This technique involves bare correlation functions 
determined by the part of the Lagrangian (49), quadratic in the fields qa, pa, and the 
interaction vertices are determined by the high-order terms of the expansion of (49) in 
these fields. We are interested in the role of the corrections to the long-wavelength 
dynamics of smectic C,  determined by this diagram. 

The analysis shows that the important fluctuational effects are associated only with 
fluctuations of smectic layers. This means that calculating the correlation functions in 
conformity with (50) we must retain in the Lagrangian the anharmonic terms over the 
smectic variable Wand confine ourselves to the quadratic approximation over the other 
(weakly fluctuating) variables. Therefore integration over these weakly fluctuating 
variables in (50) becomes Gaussian and can be performed explicitly. This procedure of 
effectively excluding the weakly fluctuating variables was proposed by Kats and Lebedev 
(1983,1988). 

Later in this section we shall be interested in the correlation functions of the variables 
W, q and of the fields conjugate to them. These correlators describe the slow modes of 
smectic C in the region of wavevectors defined by the inequality (44); it is in this region 
that the main fluctuation corrections are obtained. In this case the procedure of excluding 
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weakly fluctuating variables is analogous to the derivation of linear dynamic equations 
for slow modes, performed in the preceding section. 

Due to the Gaussian character of integration over the weakly fluctuating variables, 
the procedure of calculating integrals over them in (50) r_educes to the replacement of 
the Lagrangian L by its extremum over these fields. Calculation of the extremum of the 
Lagrangian (49) over the fields p p ,  p o ,  p I  ( p I  is conjugated to j I ,  vortex free part of j) 
brings about the conditions (37). Then the condition of the extremum (49) over p ,  CJ and 
V j  reduces to p o  = p p  = p I  = 0. Exclusion of the velocity components V,, V ,  and of the 
fields conjugate to them should be performed with the explicit form of the viscosity 
tensor (28) taken into account. 

The result of calculating the extremum of the Lagrangian (49) over these fields can 
be represented as 

Here the subscripts ,U, v = 1 , 2  and ( q l ,  q2 )  = ( U ,  q) while p 1 , p 2  are supplementary 
fields (not coinciding with the fieldsp,, p e  conjugate to U, q). In (51) there are variational 
derivatives of the energy E over u and q ;  explicit expressions for these derivatives can 
be found by means of (9), (10). The matrix ypu in (51) is the following differential 
operator: 

In the smectic B phase there is no coupling of the undulational and orientational 
modes, which corresponds to A 1  = 0. In this case the Lagrangian (51) is the sum of two 
terms Lw + L,, corresponding to the undulational and orientational modes, respect- 
ively. The expression for Lw has the same form in smectics B as in smectics A. Hence it 
follows that the dynamic effects associated with fluctuations of smectic layers are 
described by the same expressions in the B phase as in the A phase. 

Correlation functions of the fields U ,  q ,  p I ,  p 2  can be calculated by means of (51) in 
accordance with the definition analogous to (50). Further we shall need the following 
correlation functions: 

G(t, - t 2 ,  rl - .2> = b ( t 1 ,  r l k l ( t 2 ,  r2)) 

= I D u D q D p l D p 2 e x p  i i  i d td3 rLef f  1 up l  

(53)  

= / D u D q D p l D p 2 e x p  

(54) 
As has been pointed out, the poles of the response function G(w,  q )  determine the 
spectrum of the system and, in the given case, the spectrum of slow modes. 

The Lagrangian (51) describes purely relaxational dynamics of the fields U ,  q (then 
the kinetic coefficients depend quite non-trivially on the wavevector). For such systems 
there is a simple relationship between the response function and pair correlation func- 
tion: 

D ( W )  = - ( T / w ) [ G ( ~ )  - G(-w)] .  (55 )  
The proof of the relation (55 ) ,  which in fact is the fluctuation-dissipation theorem, can 
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be found in our work (Gurovich et a1 1988). The response function G(w)  is analytical in 
the upper semi-plane. Integration of (55) over the frequency w with this analyticity 
taken into account yields the following expression for the one-time correlation function: 

D(t ,  t )  = - iTG(w = 0). (56) 

7. Renormalization of the slow mode spectrum 

Due to smectic layer fluctuations there emerge corrections to the dispersion law of the 
slow mode spectrum (45), obtained in the linear approximation. This effect is associated 
with self-action of the undulational mode described by the terms, non-linear in the 
displacement vector, in the dynamic equations. These corrections have a logarithmic 
character and are, apparently, small in real smectics. Yet the consecutive procedure of 
taking them into account is no doubt of methodological interest and the expressions for 
the pair correlation obtained in this section will be further used for calculating the 
diverging 0 - l  corrections to the viscosity coefficients. 

Fluctuation corrections to the spectrum can be calculated within the framework of 
the perturbation theory. The corresponding diagram technique is generated by the 
Lagrangian (51). In this technique there are third- and fourth-order vertices, defined by 
(9), (11) and (51). Let us give the explicit form of corresponding contributions to the 
Lagrangian: 

L$:j = - ( B / ~ ) V , ~ ~ ( V U ) ~  - BVp,VuV,u 

L$f = ( B / ~ ) V ~ , V U ( V U ) ~ .  
(57) 

Remember that the z axis is directed along the (equilibrium) normal to smectic layers. 
The bare Green functions are defined by the quadratic part of (51). The explicit 

equation for the bare correlation function (53) in the Fourier representation reads 

The poles of this expression determine bare dispersion laws of slow modes; these 
equations naturally coincide with (45). The equation for the correlation function (54) 
can be found by means of (55). In conformity with (56) and (58) the one-time correlation 
function D(t ,  t )  proves to be equal to 

D(t, t ,  q)  = T(BqS + Kq;)- '  (59) 

where Kis defined in (47). This expression can be obtained directly by means of the part 
of the energy (7), quadratic in U .  

Due to the interaction terms (57) corrections to the bare correlation function (58) 
emerge; these corrections can be calculated in perturbation theory. Singling out self- 
energy blocks from the perturbation series, we come to the conventional relation 

(60) G-' = Go' - 2.  

Let us stress that in the framework of this technique this relation is not trivial, but is the 
consequence of the condition (popb)  = 0. In the lowest order of the perturbation theory 
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Figure 1. The self-energy function. 

the contribution to the self-energy function Z is defined by the diagram in figure 1. In 
this figure the full curve represents the correlation function (53), the broken curve 
represents the correlation function (54), and the vertices are generated by the third- 
order term in (57). 

The corresponding analytical expression C can be conveniently divided into two 
terms: 

It is not difficult to make sure that the integral in (61) is purely logarithmic. Therefore, 
calculating it (with logarithmic accuracy) one can drop the dependence on the external 
frequency o and on the wavevector k in the integrand expressions. Comparing the 
obtained expression for C1 with equation (58) for the bare correlation function we come 
to the conclusion that in conformity with (60) the presence of C, is equivalent to the 
emergence of the fluctuational corrections to the modulus B ,  equal to Z l / k i .  

The situation with the contribution C 2  is somewhat more complex. The expression 
for C2(0, 0) is an integral, diverging at the upper limit. Yet the value of C2(0, 0) must be 
put equal to zero since the presence of this quantity is equivalent to the emergence of 
the  VU)^ proportional term in the elastic energy (12). But this term is not possible 
because of the rotational invariance. So, calculating C 2 ( o ,  k )  one should subtract from 
(62) the formally divergent constant C2(0, 0). Expanding this difference in o, k ,  we get 
in the main approximation 

C 2 ( w ,  k )  - C2(0, 0) = AKk: + i A q 3 0 k $ .  (63) 

This approximation is justified by the fact that the expressions for AK and A q 3  are 
determined by purely logarithmic integrals. As follows from (58), (60) and (63) the 
quantities A K  and A q 3  have the meaning of corrections to the Frank modulus K and the 
viscosity coefficient q 3 ,  entering in equation (58) for the bare correlation function. 

Calculating the quantities A B ,  A K  and A q 3  one should use the representation (55). 
Using the analytical properties of the function G ( v )  one can make sure that AB and AK 
are defined by the same integrals as in the static case. The equation for the quantity A q 3  
does not reduce to those integrals of the one-time correlation functions. This is natural 
since q is a purely dynamic characteristic. 

The analysis reveals that the corrections to K and q defined by equation (63) are 
anisotropic in the smectic layer plane. This is what in fact complicates the form of the 
renormalization group equations for smectic C. We shall not discuss these equations 
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here, noting only that for real smectics the logarithmic corrections A K ,  Aq3 are evidently 
small compared to K and q3.  

8. Fluctuation corrections to the spectrum of sound 

Now we shall study fluctuational corrections to the dynamic equations for weakly 
fluctuating variables. They emerge when interaction modes are taken into account, 
which is described by the non-linear terms in the equations of motion (24). As was 
mentioned above the only strongly fluctuating degree of freedom of smectics is associated 
with smectic layer displacement. This means that it is necessary to take into account only 
non-linearities over the displacement vector U, introduced in (11). 

The most important non-linear U term in the dynamic equations is related to the non- 
dissipative part of the stress tensor (22 ) .  The part of this tensor, quadratic in U, generates 
the following third-order contribution in the Lagrangian (49): 

L(3)=  -hB(yvipj f v , p ~ ) ( V u ) ~  f B V ; p k ( l j V k u f l k V j U ) [ y ( b p / p )  - v , u ]  (64) 

(65) 

where 

Y = - (In qs/ln P ) o .  

The derivative in (65) is calculated when the specific entropy a i s  constant; in this section 
we shall consider the spectrum of acoustic oscillations at constant a .  

The acoustic oscillation spectrum is determined by poles of the response function 
G;k = ( j i pk ) ,  where pk are supplementary fields conjugate to j k .  Due to interaction a 
fluctuational contribution to Gik occurs which can be written in the form of the self- 
energy function C;k. The latter is defined in such a way that 

where the index zero denotes the bare value. Due to the interaction (64) in the lowest 
order of the perturbation theory there appears the following contribution to Cik: 

z i k ( @ ,  k )  = - (i/m)Cl(m? k > [ l i  + y(k i /kz ) l [ lk  f ? ( k k / k z ) l .  (67) 
The function C l ( u ,  k) is defined by equation (61). 

From the preceding section, the function C is related to the fluctuational correction 
to the modulus B. It is easy to verify that the real part of (67) reproduces logarithmic 
corrections to the modulus B and to the compressibility, which are observed in the static 
case. In dynamics these quantities determine velocities of the first and second sound. 
Thus we come to the conclusion that fluctuations cause logarithmic corrections to the 
velocity of acoustic wave propagation. 

The imaginary part of (67) affects the spectrum much more strongly; this imaginary 
part can be reduced to the following form: 

Im Z ; k ( O ,  k )  = -2()'k; + l ;k , ) (ykk  f lkk , )A(o ,  k)  (68) 
where 

Comparing Im & in (68) with the structure of the bare correlation function Gik shows 
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that the presence of (68) is equivalent to the emergence of fluctuational contributions 
to the following viscosity coefficients: 

A q l  = 2(1 + y ) ’A  Aq4 = 2y2A A75 = 2 y ( y  + 1)A. (70)  

Let us consider the quantity A ( w ,  0), since it is determined by the fluctuational 
contribution to the absorption of the sound. Using the explicit equations (55)  and (58) 
we find 

Here m,,2 = KcY,,~/@*. From (70) and (71) the main conclusion about the dynamics of 
smectics follows: the divergence w-l of the bulk viscosity coefficients due to fluctuations. 

Equation (71) holds for the smectic C phase, and the equation for the A phase is 
obtained from (71)  if we put m;,: = 0. Note that from the explicit form of (71), the 
coefficient at B312/K3/2 I wI in the expression for A ( @ ,  0) for the C phase is always larger 
than in the A phase. 

For information let us give the spectrum of the first and second sound with the 
fluctuational contribution (70 )  taken into account: 

IO= + c l k - ( i / p k 2 ) [ 4 ( q z  + q 4 ) k :  + ( q s  + 2 q 3 ) k : k :  + i q 1 k f ‘ + A ( y k 2 + k : ) * ]  (72)  

w =  * c Z k - ( i / p k 2 ) [ i q 3 ( k : - k : ) ’ + 4 ( q 1  + q 2 + q 4 - 2 q s ) k : k :  + A k : k : ] .  (73)  
Here there are bare viscosity coefficients q (w independent) and the velocities of the 
first sound c 1 ,  and of the second sound, c2 are defined as 

Since A - w- l  in the low-frequency limit the fluctuation of the attenuation of sound 
exceeds the bare attenuation. This means that in (72)  and (73) the terms with q can be 
neglected in comparison with the term in A .  

9. Discussion 

We were interested in the difference between fluctuational attenuation of sound in 
smectics A and smectics C. As is known, in the C phase, as compared with the A phase, 
there is an extra orientational mode whose spectrum is defined by equation (48). 
However, this fact alone does not affect the expression for the fluctuational attenuation. 
So, in hexatic smectics B where the orientational mode is also present, the expression 
for fluctuational attenuation of sound has the same form as in smectics A. Yet in smectics 
C the situation is more complicated. This fluctuational attenuation is determined by the 
region of wavevectors in which there is the undulation mode. In smectics C (due to 
their lower symmetry than in hexatic smectics B) this mode becomes coupled to the 
orientational mode. This, in particular, brings about distortion of the spectrum (48) for 
the wavevectors with small q2.  The respective region of wavevectors is determined by 
the inequality (44), while the spectrum in this region is determined by (45). The strong 
coupling of the orientational and undulational modes takes place despite the weak 
anisotropy of the layer in real smectics C. This has been demonstrated by our analysis 
of the critical dynamics of the A-C transition (Gurovich et af 1988). 
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The presence of the strong coupling of the orientational and undulation modes does 
not alter our conclusion that the bulk viscosity coefficients of smectics diverge as w-l 
due to fluctuations. However this coupling generates the difference of the coefficients 
at w-l in the C phase and in the A phase. The explicit expressions for fluctuational 
corrections to the viscosity coefficients in smectics C are defined by equations (70) and 
(71). The integral entering into (71) can only be found numerically, the quantities m1,2 
being determined by material parameters of each concrete substance. 

The fact that the attenuation in smectics C is stronger than in smectics A,  follows 
directly from equation (71). In the single-constant approximation ( a1 = a2),  the integral 
(71) is calculated explicitly: 

T B3'* 1 E(m- ' )  
A ( w , O ) = - - - -  

w K3l2 128 1 -m-'  

where E(m-') is the complete elliptical first-order integral. 
Calculating fluctuational corrections to the viscosities we have confined ourselves to 

the single-loop approximation. For the calculation to be correct it is necessary that the 
parameter 

~ O - ~ ( T B ~ / ~ / K ~ ' * )  (75) 

be small. In real smectics this parameter has the value 10-3-10-4, which is consistent 
with our approximation. Due to the small value of the parameter (75) the logarithmic 
corrections to the elasticity modulus and to the viscosity coefficients studied in section 
7 are small. 

Calculating the integral (69) determining the fluctuational attenuation, we have put 
k = 0. The analysis shows that this is always valid for the study of the spectrum of the 
first sound. As for the second sound, such neglect is justified only if: 

In real smectics the parameter in the right-hand side of (76) is of the order lo2. Therefore 
the inequality (76) can be easily satisfied. 

Note that only the fluctuational corrections to the viscosity coefficients q q4, q5 are 
large. There is only a small logarithmic correction to the q3 viscosity and there are no 
fluctuational corrections to the viscosity coefficient q and to the components of the heat 
conductivity tensor and to the permeation coefficients. 

In conclusion let us discuss experimental data of Collin et a1 (1986a, b) for smectic A 
and C phases of the same substance. Firstly, note that the modulus B in the smectic Cis  
smaller than in the smectic A.  This fact is consistent with our analysis of the critical 
behaviour of the modulus B at the A-C transition (see section 4). 

Collin et a1 (1986a, b) concentrated on the analysis of the fluctuational attenuation 
(lo$') of sound. From the angular dependence of this attenuation they concluded that 
the dimensionless parameter y entering in (70) has different signs in the A and C phases. 
In the C phase y < 0 and therefore the fluctuational attenuation of the first sound 
vanishes for certain directions of propagation. This fact is also consistent with our theory. 
From (65) and (30) it follows that in the mean field theory the. coefficient y has a negative 
jump in the transition point. In the region of developed fluctuations: 

Note that the factors in this singularity have different signs in the A and C phases. 
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In their analysis of the fluctuational attenuation in the smectic C, Collin et a1 (1986a) 
concluded that the value of the modulus Kin the C phase is smaller than its value in the 
A phase. However our consideration (see section 4) shows that corrections to the 
modulus K are absent in the single-loop approximation and, therefore, the values of K 
in A and C phases must be close. This discrepancy disappears if we take into account 
the fact that in the C phase Collins et a1 used the expression for the fluctuational 
attenuation which is correct only for the A phase. For the C phase it is necessary to use 
our equation (71). This equation shows that the factor at 

(B3I2/K3l2) l /w 

for the C phase is always larger than in the A phase. Collin et a1 interpreted this fact as 
if the modulus Kin  the C phase is smaller than in the A phase. 

Thus our theory shows that in the long-wavelength dynamics of all kinds of smectics 
the fluctuational effects are related to the displacement of smectic layers (the undu- 
lational mode). Besides this, in smectics C, by virtue of their lower symmetry (in 
comparison with smectics A or B) the dynamic anisotropy of layers (leading to the 
coupling of the orientational and undulational modes) plays an important role. 
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